Glucocorticoid exposure and tissue gene expression of 11β HSD-1, 11β HSD-2, and glucocorticoid receptor in a porcine model of differential fetal growth

Author:

McNeil Christopher J,Nwagwu Margaret O,Finch Angela M,Page Kenneth R,Thain Alan,McArdle Harry J,Ashworth Cheryl J

Abstract

Glucocorticoids play a critical role in fetal development, but inappropriate exposure is associated with reduced fetal growth. We investigated cortisol exposure and supply in a porcine model of differential fetal growth. This model compares the smallest fetus of a litter with an average-sized sibling at three stages of gestation. At day 45, small fetuses had reduced plasma cortisol (16.8 ± 3.4 ng/ml) relative to average fetuses (34.4 ± 3.4 ng/ml, P < 0.001). At day 65 levels had reduced in small and average fetuses to similar concentrations (5.7 ± 1.0 vs 4.8 ± 0.5 ng/ml, P = 0.128). By day 100, elevated levels were found in small fetuses (10.7 ± 1.5 vs 7.6 ± 0.7 ng/ml, P < 0.001). Maternal plasma cortisol was unchanged over gestation (day 45, 56.7 ± 21.6 ng/ml; day 65, 57.8 ± 14.4 ng/ml; day 100, 55.7 ± 6.5 ng/ml). We examined the cause of altered cortisol by investigating the fetal hypothalamic–pituitary–adrenal axis through the measurement of adrenocorticotropic hormone and assessing exposure to maternal cortisol by quantifying placental 11β-hydroxysteroid dehydrogenase-isoform 2 (11β HSD-2) gene expression. These data suggest that altered cortisol supply was of fetal origin. We examined organ glucocorticoid (GC) metabolism by the measurement of GC receptor (GR) and 11β-hydroxysteroid dehydrogenase-isoform 1 (11β HSD-1) gene expression. We found that fetal organs have different temporal patterns of 11β HSD-1 and GR expression, with the liver particularly sensitive to cortisol in late gestation. This study examines GC exposure in naturally occurring differential growth and simultaneously explores tissue GC sensitivity and handling, at three key stages of gestation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3