Evidence that nuclear receptors are related to terpene synthases

Author:

Houston Douglas R1ORCID,Hanna Jane G1,Lathe J Constance2,Hillier Stephen G3ORCID,Lathe Richard4ORCID

Affiliation:

1. 1Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK

2. 2Program in Neuroscience, University of Glasgow, Glasgow, UK

3. 3Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

4. 4Division of Infection Medicine, University of Edinburgh, Edinburgh, UK

Abstract

Ligand-activated nuclear receptors (NRs) orchestrate development, growth, and reproduction across all animal lifeforms – the Metazoa – but how NRs evolved remains mysterious. Given the NR ligands including steroids and retinoids are predominantly terpenoids, we asked whether NRs might have evolved from enzymes that catalyze terpene synthesis and metabolism. We provide evidence suggesting that NRs may be related to the terpene synthase (TS) enzyme superfamily. Based on over 10,000 3D structural comparisons, we report that the NR ligand-binding domain and TS enzymes share a conserved core of seven α-helical segments. In addition, the 3D locations of the major ligand-contacting residues are also conserved between the two protein classes. Primary sequence comparisons reveal suggestive similarities specifically between NRs and the subfamily of cis-isoprene transferases, notably with dehydrodolichyl pyrophosphate synthase and its obligate partner, NUS1/NOGOB receptor. Pharmacological overlaps between NRs and TS enzymes add weight to the contention that they share a distant evolutionary origin, and the combined data raise the possibility that a ligand-gated receptor may have arisen from an enzyme antecedent. However, our findings do not formally exclude other interpretations such as convergent evolution, and further analysis will be necessary to confirm the inferred relationship between the two protein classes.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3