C-peptide attenuates hyperglycemia-induced pulmonary fibrosis by inhibiting transglutaminase 2

Author:

Jeon Hye-Yoon1,Lee Ah-Jun1,Kim Eun-Bin1,Kim Minsoo2,Park Won Sun3,Ha Kwon-Soo1ORCID

Affiliation:

1. 1Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Republic of Korea

2. 2Department of Anesthesiology and Pain Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Republic of Korea

3. 3Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Republic of Korea

Abstract

Proinsulin C-peptide has a protective effect against diabetic complications; however, its role in hyperglycemia-induced pulmonary fibrosis is unknown. In this study, we investigated the inhibitory effect of C-peptide on hyperglycemia-induced pulmonary fibrosis and the molecular mechanism of C-peptide action in the lungs of diabetic mice and in human pulmonary microvascular endothelial cells (HPMVECs). We found that, in the lungs of diabetic mice, C-peptide supplementation using osmotic pumps attenuated hyperglycemia-induced pulmonary fibrosis and expression of fibrosis-related proteins. In HPMVECs, C-peptide inhibited vascular endothelial growth factor-induced adherens junction disruption and endothelial cell permeability by inhibiting reactive oxygen species generation and transglutaminase (TGase) activation. In the lungs, C-peptide supplementation suppressed hyperglycemia-induced reactive oxygen species generation, TGase activation, and microvascular leakage. C-peptide inhibited hyperglycemia-induced inflammation and apoptosis, which are involved in the pathological process of pulmonary fibrosis. We also demonstrated the role of TGase2 in hyperglycemia-induced vascular leakage, inflammation, apoptosis, and pulmonary fibrosis in the lungs of diabetic TGase2-null (Tgm2−/−) mice. Furthermore, we demonstrated a long-term inhibitory effect of systemic delivery of C-peptide using K9-C-peptide hydrogels on hyperglycemia-induced fibrosis in diabetic lungs. Overall, our findings suggest that C-peptide alleviates hyperglycemia-induced pulmonary fibrosis by inhibiting TGase2-mediated microvascular leakage, inflammation, and apoptosis in diabetes.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3