Targeting Streptococcus pneumoniae UDP-glucose pyrophosphorylase (UGPase): in vitro validation of a putative inhibitor

Author:

Sharma Monica,Sharma Swati,Ray Pallab,Chakraborti Anuradha

Abstract

Background: Genome plasticity of Streptococcus pneumoniae is responsible for the reduced efficacy of various antibiotics and capsular polysaccharide based vaccines. Therefore targets independent of capsular types are sought to control the pneumococcal pathogenicity. UcrDP-glucose pyrophosphorylase (UGPase) is one such desired candidate being responsible for the synthesis of UDP-glucose, a sugar-precursor in capsular biosynthesis and metabolic Leloir pathway. Being crucial to pneumococcal pathobiology, the effect of UGPase inhibition on virulence was evaluated in vitro. Methods: A putative inhibitor (UDP) was evaluated for effective inhibitory concentration in S. pneumoniae and A549 cells, its efficacy and toxicity. Effect of UDP on adherence and phagocytosis was measured in human respiratory epithelial (A549 and HEp-2) and macrophage (THP1 and J774.A.1) cell lines respectively. Results: A differential effective inhibitory concentration of UDP for UGPase inhibition was observed in S. pneumoniae and A549 cells i.e. 5 µM and 100 µM respectively. UDP treatments lowered percent cytotoxicity in pneumococcal infected monolayers and didn't exert adverse effects on viabilities. S. pneumoniae adherence to host cells was decreased significantly with UDP treatments. UDP induced the secretion of IL-1β, TNF-α, IL-6, and IL-8 and increased pneumococcal phagocytosis. Conclusion: Our study shows UDP mediated decrease in the virulence of S. pneumoniae and demonstrates UDP as an effective inhibitor of pneumococcal UGPase.

Publisher

Aboutscience Srl

Subject

Pharmacology (medical),Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3