Affiliation:
1. Graduate School of Business and Department of Economics, Stanford
Abstract
This essay describes the evolution and recent convergence of two methodological approaches to causal inference. The first one, in statistics, started with the analysis and design of randomized experiments. The second, in econometrics, focused on settings with economic agents making optimal choices. I argue that the local average treatment effects framework facilitated the recent convergence by making key assumptions transparent and intelligible to scholars in many fields. Looking ahead, I discuss recent developments in causal inference that combine the same transparency and relevance.
Subject
Economics and Econometrics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献