Affiliation:
1. Department of Economics, Columbia University
2. Department of Economics, Princeton University
Abstract
Applied macroeconomists often compute confidence intervals for impulse responses using local projections, that is, direct linear regressions of future outcomes on current covariates. This paper proves that local projection inference robustly handles two issues that commonly arise in applications: highly persistent data and the estimation of impulse responses at long horizons. We consider local projections that control for lags of the variables in the regression. We show that lag‐augmented local projections with normal critical values are asymptotically valid uniformly over (i) both stationary and non‐stationary data, and also over (ii) a wide range of response horizons. Moreover, lag augmentation obviates the need to correct standard errors for serial correlation in the regression residuals. Hence, local projection inference is arguably both simpler than previously thought and more robust than standard autoregressive inference, whose validity is known to depend sensitively on the persistence of the data and on the length of the horizon.
Funder
National Science Foundation
Subject
Economics and Econometrics
Cited by
141 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献