A unified framework for efficient estimation of general treatment models

Author:

Ai Chunrong1,Linton Oliver2,Motegi Kaiji3,Zhang Zheng4

Affiliation:

1. School of Management and Economics, Chinese University of Hong Kong, Shenzhen

2. Faculty of Economics, University of Cambridge

3. Graduate School of Economics, Kobe University

4. Center for Applied Statistics, Institute of Statistics & Big Data, Renmin University of China

Abstract

This paper presents a weighted optimization framework that unifies the binary, multivalued, and continuous treatment—as well as mixture of discrete and continuous treatment—under a unconfounded treatment assignment. With a general loss function, the framework includes the average, quantile, and asymmetric least squares causal effect of treatment as special cases. For this general framework, we first derive the semiparametric efficiency bound for the causal effect of treatment, extending the existing bound results to a wider class of models. We then propose a generalized optimization estimator for the causal effect with weights estimated by solving an expanding set of equations. Under some sufficient conditions, we establish the consistency and asymptotic normality of the proposed estimator of the causal effect and show that the estimator attains the semiparametric efficiency bound, thereby extending the existing literature on efficient estimation of causal effect to a wider class of applications. Finally, we discuss estimation of some causal effect functionals such as the treatment effect curve and the average outcome. To evaluate the finite sample performance of the proposed procedure, we conduct a small‐scale simulation study and find that the proposed estimation has practical value. In an empirical application, we detect a significant causal effect of political advertisements on campaign contributions in the binary treatment model, but not in the continuous treatment model.

Funder

National Natural Science Foundation of China

Japan Society for the Promotion of Science

Renmin University of China

Publisher

The Econometric Society

Subject

Economics and Econometrics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3