Affiliation:
1. Department of Economics, Yale University
2. Department of Economics, Princeton University
Abstract
We consider the problem of constructing honest confidence intervals (CIs) for a scalar parameter of interest, such as the regression discontinuity parameter, in nonparametric regression based on kernel or local polynomial estimators. To ensure that our CIs are honest, we use critical values that take into account the possible bias of the estimator upon which the CIs are based. We show that this approach leads to CIs that are more efficient than conventional CIs that achieve coverage by undersmoothing or subtracting an estimate of the bias. We give sharp efficiency bounds of using different kernels, and derive the optimal bandwidth for constructing honest CIs. We show that using the bandwidth that minimizes the maximum mean‐squared error results in CIs that are nearly efficient and that in this case, the critical value depends only on the rate of convergence. For the common case in which the rate of convergence is
n
−2/5, the appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96 critical value. We illustrate our results in a Monte Carlo analysis and an empirical application.
Funder
National Science Foundation
Subject
Economics and Econometrics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献