Affiliation:
1. Department of Economics, Stanford University
2. NBER
3. Department of Economics, Brown University
4. Amazon
Abstract
We study the problem of measuring group differences in choices when the dimensionality of the choice set is large. We show that standard approaches suffer from a severe finite‐sample bias, and we propose an estimator that applies recent advances in machine learning to address this bias. We apply this method to measure trends in the partisanship of congressional speech from 1873 to 2016, defining partisanship to be the ease with which an observer could infer a congressperson's party from a single utterance. Our estimates imply that partisanship is far greater in recent years than in the past, and that it increased sharply in the early 1990s after remaining low and relatively constant over the preceding century.
Subject
Economics and Econometrics
Cited by
176 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献