Perfect Conditional ε‐Equilibria of Multi‐Stage Games With Infinite Sets of Signals and Actions

Author:

Myerson Roger B.1,Reny Philip J.2

Affiliation:

1. Department of Economics, Harris School of Public Policy, University of Chicago

2. Department of Economics, University of Chicago

Abstract

We extend Kreps and Wilson's concept of sequential equilibrium to games with infinite sets of signals and actions. A strategy profile is a conditional ε‐equilibrium if, for any of a player's positive probability signal events, his conditional expected utility is within ε of the best that he can achieve by deviating. With topologies on action sets, a conditional ε‐equilibrium is full if strategies give every open set of actions positive probability. Such full conditional ε‐equilibria need not be subgame perfect, so we consider a non‐topological approach. Perfect conditional ε‐equilibria are defined by testing conditional ε‐rationality along nets of small perturbations of the players' strategies and of nature's probability function that, for any action and for almost any state, make this action and state eventually (in the net) always have positive probability. Every perfect conditional ε‐equilibrium is a subgame perfect ε‐equilibrium, and, in finite games, limits of perfect conditional ε‐equilibria as ε → 0 are sequential equilibrium strategy profiles. But limit strategies need not exist in infinite games so we consider instead the limit distributions over outcomes. We call such outcome distributions perfect conditional equilibrium distributions and establish their existence for a large class of regular projective games. Nature's perturbations can produce equilibria that seem unintuitive and so we augment the game with a net of permissible perturbations.

Funder

National Science Foundation

Publisher

The Econometric Society

Subject

Economics and Econometrics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3