Affiliation:
1. Hertford College, Oxford University
2. Nuffield College, Oxford University
Abstract
An Equivalence Theorem between geometric structures and utility functions allows new methods for understanding preferences. Our classification of valuations into “Demand Types” incorporates existing definitions (substitutes, complements, “strong substitutes,” etc.) and permits new ones. Our Unimodularity Theorem generalizes previous results about when competitive equilibrium exists for any set of agents whose valuations are all of a “demand type.” Contrary to popular belief, equilibrium is guaranteed for more classes of purely‐complements than of purely‐substitutes, preferences. Our Intersection Count Theorem checks equilibrium existence for combinations of agents with specific valuations by counting the intersection points of geometric objects. Applications include matching and coalition‐formation, and the “Product‐Mix Auction” introduced by the Bank of England in response to the financial crisis.
Funder
Economic and Social Research Council
Subject
Economics and Econometrics
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献