Algorithms for Stochastic Games With Perfect Monitoring

Author:

Abreu Dilip1,Brooks Benjamin2,Sannikov Yuliy3

Affiliation:

1. Department of Economics, New York University

2. Department of Economics, University of Chicago

3. Graduate School of Business, Stanford University

Abstract

We study the pure‐strategy subgame‐perfect Nash equilibria of stochastic games with perfect monitoring, geometric discounting, and public randomization. We develop novel algorithms for computing equilibrium payoffs, in which we combine policy iteration when incentive constraints are slack with value iteration when incentive constraints bind. We also provide software implementations of our algorithms. Preliminary simulations indicate that they are significantly more efficient than existing methods. The theoretical results that underlie the algorithms also imply bounds on the computational complexity of equilibrium payoffs when there are two players. When there are more than two players, we show by example that the number of extreme equilibrium payoffs may be countably infinite.

Funder

National Science Foundation

Publisher

The Econometric Society

Subject

Economics and Econometrics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A partial identification framework for dynamic games;International Journal of Industrial Organization;2023-03

2. Empirical Framework for Two-Player Repeated Games with Random States;Journal of Econometric Methods;2022-11-29

3. Algorithms for Stochastic Games With Perfect Monitoring;Econometrica;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3