Author:
Alzoubaidi Mutasem, ,Al-Balbissi Adli,Alzoubaidi Abdel Rahman,Alzoubaidi Amr,Azzeh Baha,Al-Mansour Ahmed,Farid Ahmed, , , , , ,
Abstract
This paper conducted an operational, economic analysis to assess alternative solutions to traffic congestion. They involved integrating adaptive traffic signal control (ATSC) with connected vehicle technology (ATSC-CV) and the application of various conventional and unconventional solutions. The studied conventional scenarios include signal timing optimization, signal actuation, and upgrading existing intersections to interchanges. There were unconventional scenarios involving converting two intersections to interchanges and the third to a continuous green-T intersection (CGTI). Different unconventional alternatives involved deploying ATSC-CV-based systems assuming varying market penetration rates (MPRs). The operational performance of each alternative was analyzed using VISSIM microsimulation software. To model the driving behavior of CVs, Python programming language was used through the COM interface in VISSIM. One-way analysis of variance (ANOVA) and post-hoc testing results indicate that implementing any suggested alternative would substantially decrease the mean vehicular travel time compared to the fixed signal control strategy currently implemented. Specifically, the ATSC-CVbased systems yielded notable travel time reductions ranging from 9.5% to 21.3%. Also, ANOVA results revealed that the highest benefit-to-cost ratio among all alternatives belonged to scenarios in which the MPRs of CVs were 100%. It was also found that ATSC-CV-based systems with MPRs of 25% and 50% would be as feasible as converting signalized intersections to underpass interchanges.
Publisher
Azerbaijan State Oil and Industry University
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献