Affiliation:
1. School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, Australia
Abstract
This article re-examines Lawvere's abstract, category-theoretic proof of the fixed-point theorem whose contrapositive is a `universal' diagonal argument. The main result is that the necessary axioms for both the fixed-point theorem and the diagonal argument can be stripped back further, to a semantic analogue of a weak substructural logic lacking weakening or exchange.
Reference39 articles.
1. Samson Abramsky. “No-cloning in categorical quantum mechanics”. In: Semantic techniques in quantum computation. https://doi.org/10.1017/CBO9781139193313.002, arXiv:0910.2401. Cambridge Univ. Press, Cambridge, 2010, pp. 1–28.
2. Samson Abramsky and Jonathan Zvesper. “From Lawvere to Brandenburger-Keisler: Interactive Forms of Diagonalization and Self-reference”. In: Coalgebraic Methods in Computer Science. Ed. by Dirk Pattinson and Lutz Schröder. https://doi.org/10.1016/j.jcss.2014.12.001, arXiv:1006.0992. 2012, pp. 1–19.
3. John Baez and Mike Stay. “Physics, topology, logic and computation: a Rosetta Stone”. In: New structures for physics. Vol. 813. Lecture Notes in Phys. https://doi.org/10.1007/978-3-642-12821-9, arXiv:0903.0340. Springer, Heidelberg, 2011, pp. 95–172.
4. Carsten Butz. “Regular Categories and Regular Logic”. In: BRICS LS-98-2 (1998). https://www.brics.dk/LS/98/2/.
5. Georg Cantor. “Ueber eine elementare Frage der Mannigfaltigkeitslehre”. In: Jahresber. Dtsch. Math.-Ver. 1 (1892), pp. 75–78.