Energy-efficient algebra kernels in FPGA for High Performance Computing

Author:

Favaro Federico,Dufrechou Ernesto,Ezzatti Pablo,Oliver Juan Pablo

Abstract

The dissemination of multi-core architectures and the later irruption of massively parallel devices, led to a revolution in High-Performance Computing (HPC) platforms in the last decades. As a result, Field-Programmable Gate Arrays (FPGAs) are re-emerging as a versatile and more energy-efficient alternative to other platforms. Traditional FPGA design implies using low-level Hardware Description Languages (HDL) such as VHDL or Verilog, which follow an entirely different programming model than standard software languages, and their use requires specialized knowledge of the underlying hardware. In the last years, manufacturers started to make big efforts to provide High-Level Synthesis (HLS) tools, in order to allow a grater adoption of FPGAs in the HPC community.Our work studies the use of multi-core hardware and different FPGAs to address Numerical Linear Algebra (NLA) kernels such as the general matrix multiplication GEMM and the sparse matrix-vector multiplication SpMV. Specifically, we compare the behavior of fine-tuned kernels in a multi-core CPU processor and HLS implementations on FPGAs. We perform the experimental evaluation of our implementations on a low-end and a cutting-edge FPGA platform, in terms of runtime and energy consumption, and compare the results against the Intel MKL library in CPU.  

Publisher

Universidad Nacional de La Plata

Subject

Artificial Intelligence,Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Computer Science (miscellaneous),Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Power-Energy Balance of blas Kernels in Modern fpgas;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3