Leveraging index compression techniques to optimize the use of co-processors

Author:

Freire ManuelORCID,Marichal RaulORCID,Martinez Agustin,Padron Daniel,Dufrechou ErnestoORCID,Ezzatti PabloORCID

Abstract

The significant presence that many-core devices like GPUs have these days, and their enormous computational power, motivates the study of sparse matrix operations in this hardware. The essential sparse kernels in scientific computing, such as the sparse matrix-vector multiplication (SpMV), usually have many different high-performance GPU implementations. Sparse matrix problems typically imply memory-bound operations, and this characteristic is particularly limiting in massively parallel processors. This work revisits the main ideas about reducing the volume of data required by sparse storage formats and advances in understanding some compression techniques. In particular, we study the use of index compression combined with sparse matrix reordering techniques in CSR and explore other approaches using a blocked format. The systematic experimental evaluation on a large set of real-world matrices confirms that this approach achieves meaningful data storage reductions. Additionally, we find promising results of the impact of the storage reduction on the execution time when using accelerators to perform the mathematical kernels.

Publisher

Universidad Nacional de La Plata

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3