Factors Controlling Initial Deposition and Long-Term Fate of Spilled Oil on Gravel Beaches

Author:

Hayes Miles O.1,Michel Jacqueline1,Noe David C.2

Affiliation:

1. Research Planning, Inc. Post Office Box 328, Columbia, South Carolina 29202

2. RPI International, Inc. 4728 Walnut Street, Boulder, Colorado 80301

Abstract

ABSTRACT Several major oil spills of record (including the 1974 Metula spill, the 1978 Amoco Cadiz spill, and the 1989 Exxon Valdez spill) occurred along shorelines with abundant gravel beaches. Observations of these spills help in understanding factors controlling the initial deposition and long-term fate of spilled oil in such locations. Gravel beaches are most common on rocky, glaciated coasts (Holocene and/or Pleistocene). For example, leading-edge coastlines in subpolar to polar regions, of which the Alaska coast is a prime example, may have gravel beach deposits along more than 50 percent of their length. Spilled oil coming onshore in such gravel areas is likely to remain for a long time (up to decades), because of the potential for deep penetration and burial of the oil in the coarse sediments. The detailed, three-dimensional configuration of gravel beach deposits is affected by the internal characteristics of the waves shaping the beach (reflective or dissipative). Reflective waves typically produce steep, coarse, cuspate berms, which allow for deep penetration and burial in the beach face/berm areas. Dissipative waves typically build intertidal swash bars that may move landward and bury oil deposits, such as asphalt pavements. It would be useful for future contingency mapping projects to include this distinction on maps of gravel beaches. The formation of armoring (structural strengthening) of a gravel beach surface impedes erosion and sediment transport. Therefore, such beaches are likely to retain buried oil longer than those without armoring. Gravel beaches, because they are commonly located along plate margins, are usually subject to tectonic readjustment. The Exxon Valdez spill occurred along a shoreline out of equilibrium as a result of the 1964 earthquake. Uplift and downwarp is on the order of 1 to 3 meters throughout most of the area of the spill. Almost every coastal location affected by the spill is undergoing readjustment, causing many site-specific interpretive problems related to burial, penetration, and hydraulic flushing. For example, in many areas, a thin gravel veneer of armor overlies uplifted rock platforms and/or fine-grained bay bottom, or downwarped soil horizons, which served as either zones of oil accumulation or pathways of hydraulic flushing, depending on local conditions.

Publisher

International Oil Spill Conference

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3