Abstract
Vegetative and reproductive growth in cape gooseberry (Physalisperuviana L.) proceed concomitantly during the greater part of the life cycle thereby foliar traits (e.g. leaf area) become important in photosynthetic action of the plant. In present study, the leaf area variation in cape gooseberry was studied at five phenological stages i.e. pre-flowering (30 DAT), start of flowering (60 DAT), early fruiting (120 DAT), peak fruiting (180 DAT) and late fruiting (240 DAT), grown at three spacings (60 × 75, 75 × 75 and 75 × 90 cm) and four NPK levels (control, 60:40:40, 80:60:60 and 100:80:80 kg ha-1). Leaf area increased from per-flowering (73.51 cm2) to start of flowering (82.26 cm2) and thereafter, it was decreased gradually at later stages i.e. early fruiting (79.17 cm2), peak fruiting (73.15 cm2) and late fruiting (60.21 cm2). Spacing had no significant effect on leaf area at pre-flowering and start of the flowering, but at later stages, widest spacing (75 × 90 cm) exhibited significantly maximum leaf area at early fruiting (82.44 cm2), peak fruiting (78.22 cm2) and late and fruiting (65.31 cm2). Leaf area increased due to increased NPK levels with maximum values under 100:80:80 kg NPK ha-1 at all the phenological stages: pre-flowering (78.99 cm2), start of flowering (90.97 cm2), early fruiting (88.47 cm2), peak fruiting (80.74 cm2) and late fruiting (67.22 cm2). Spacing × NPK Interactions was significant only at peak fruiting and late fruiting stages with maximum leaf area (75.22 and 71.02 cm2, respectively) at 75 × 90 cm + NPK @ 100:80:80 kg ha-1. These findings can be further helpful in leaf sclerophylly studies in cape gooseberry.
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献