Impact of honey-enriched mulberry diet on the energy metabolism of the silkworm, Bombyx mori

Author:

Siva Prasad S.,Madhavi R.

Abstract

The present study was taken-up with a view to clearly define the role of oxidative phosphorylation vis-a-vis transdeamination in Bombyx mori metamorphosis, under the influence of honey-enriched mulberry diet. Therefore, the study examined the accumulation and utilization patterns of carbohydrate (glycogen, trehalose, glucose) and non-carbohydrate energy reserves (proteins, amino acids) in its fat body during larval, pupal and adult stages. In accordance with Hutchinson’s investment principle, the energy reserves invested during larval stage are partly used in pupal stage and those invested during larval and pupal stages are used in adult stage. Their utilization patterns are correlated with the activity levels of succinate (SDH) and glutamate (GDH) dehydrogenases and aspartate (AAT) and alanine (ALAT) aminotransferases and changes thereof were interpreted in terms of glycolytic oxidative phosphorylation and non-glycolytic transdeamination.  The trends in mass incorporation rates vis-à-vis enzyme activities indicated that the metabolism-related energy needs of all metamorphic events are majorly met through a gluconeogenetic mechanism called transdeamination, while the behavioural-related energy demands of larval and pupal stages are fulfilled through glycolytic-based oxidative phosphorylation. The activity trends further indicated that AAT plays major role in meeting the energy needs of larva and pupa, while GDH predominantly meets the energy requirements of reproduction in adults. The honey-enriched mulberry diet showed stage-specific and pathway-specific impacts on energy metabolism. It positively reinforced the energy metabolism in larval stage, but showed no significant effect in pupal and adult stages. Similarly, it showed more promising effect on glycolytic-oxidative phosphorylation and null or neutral effect on transdeamination.

Publisher

ANSF Publications

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference50 articles.

1. Aguila, J.R., Suszko, J., Gibbs A.G., and Hoshizaki, D.K. (2007). The role of larval fat cells in adult Drosophila melanogaster. J. Exp.Biol., 210: 956-963.

2. Anand, A.N., and Lorenz, M.W. (2008). Age-dependent changes of fat body stores and the regulation of fat body lipid synthesis and mobilisation by adipokinetic hormone in the last larval instar of the cricket, Gryllusbimaculatus. J. Insect Physiol., 54: 1404–1412. http://dx.doi.org/10.1016/j.jinsphys.200 8.08.001.

3. Arrese, E. L., and Soulages, J. L. (2010). Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55: 207-225. http://dx.doi.org/10.1146/annurev-ento-112408-085356.

4. Bolat, I. (2008). The importance of trehalose in brewing yeast survival. Innovative Romanian food Biotechnology, 2: 1-10.

5. Carroll, N. V., Longley, R. W.,and Roe, J. H. (1956). The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem., 220:583-593.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3