Accumulation efficiency of sunflower for lead and cadmium along with sustainable crop productivity under soil stress

Author:

Vadivel Vinothkumar,Pitchamuthu SenthilvalavanORCID

Abstract

By nature coastal saline soils having several constraints in crop production in addition to that of heavy metals contamination deteriorate the soil productivity. To restore these contaminated soils, various remediation techniques in practices must be revamped. The present study was conducted to enhance the accumulation of heavy metals lead and cadmium in sunflower and improve the crop productivity using organic and inorganic soil amendments along with NPK fertilizers in completely randomized design. Soil samples were admitted to estimating soil physico chemical properties and DTPA extractable lead (Pb) and cadmium (Cd) and plant samples analyzed for DTPA extractable Pb and Cd concentrations under ICP-OES. The physico-chemical properties and DTPA extractable Pb and Cd concentrations were significantly influenced by amendments. Sunflower exhibited significant differences concerning accumulation of Pb and Cd against amendments tested along with higher biomass production. Higher shoot and root concentration of Pb(0.72,0.81 and 0.94,0.97 mg kg-1) and Cd (1.78, 2.32 and 0.35,0.32 mg kg-1)were recorded in the treatment RDF + EDTA, which was followed by RDF + Potassium humate and RDF + Zeolite application at 45 DAS and at harvest. Remediation efficiency of sunflower increased by application of RDF + EDTA through enhanced solubility of Pb and Cd in soil and thus increased Pb and Cd accumulation in root and shoot of sunflower. Whereas, the application of RDF+ FYM or press mud reduced the bioavailability of Pb and Cd in soil and thus restricted the accumulation of Pb and Cd by sunflower. Further, application of NPK fertilizers maintained the availability of nutrients and enhanced the yield of sunflower. The application of EDTA along with NPK fertilizer enhanced the bioaccumulation of lead and cadmium by sunflower without yield loss. Since, there is a possibility to cause leaching of HMs to ground water by EDTA. Hence, RDF plus Potassium humate or Zeolite can be recommended for lead and cadmium removal by sunflower in coastal saline soils with no loss in crop productivity.

Publisher

ANSF Publications

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference45 articles.

1. Adesodun, J.K., M.O. Atayese, T.A. Agbaje, B.A. Osadiaye, O.F. Mafe, and A.A. Soretire. 2010. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water. Air. Soil Pollut. 207: 195– 201. doi:10.1007/s 11270-009-0128-3.

2. Ahmad, P., M. Sarwat, N.A. Bhat, M.R. Wani, A.G. Kazi and L.P. Tran. 2015. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss) by calcium application involves various physiological and biochemical strategies. PLoS ONE., 10(1): 0114571.doi:10.1371/journal.pone.0114571.

3. Alamgir, M., M. G. Kibria and M. Islam. 2011. Effects of farm yard manure on cadmium and lead accumulation in Amaranth (Amaranthus oleracea L.) J. Soil Sci. Environ. Manage., 2(8): 237-240.DOI:10-5897/JSSEM .

4. Allen, S.E., Grimshaw, H.M., Rowland, A.P., 1986. Chemical analysis. In: Moore, P.D., Chapman, S.B. (Eds.), Methods in Plant Ecology. Blackwell Scientific Publication, Oxford, London, pp. 285–344.

5. Alloway, B. J. 1995. The origin of heavy metals in soils. In "Heavy Metals in Soils". (Auoway, BJ., Ed.). Blackie Academic and Professional. London, pp 131-152.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3