Development of a picking and dropping mechanism for protray grown vegetable seedlings

Author:

Periasamy Vivek,Duraisamy ,Kavitha

Abstract

In India, manual transplanting of vegetable seedlings was the commonly adopted method for raising vegetable crops, but it is laborious, time-consuming and costly. Therefore, mechanical transplanters are developed to overcome the problems in manual transplanting. The present work was to develop multiple seedlings picking and transferring mechanism for protray grown vegetable seedlings. Tomato (Solanum lycopersicum), chilli (Capsicum annuum) and brinjal (Solanum melongena) seedlings were raised in portrays with coir pith as a growth media and used for transplanting operation. The mechanism was to pick seven numbers of seedlings in one row at a time and transfer them into lateral conveying system, which could deliver the seedlings one by one on to the ground at regular interval. Programmable Logic Controller was used to controlling entire operations of seedlings picking and dropping. At the time of evaluation, a totally 196 number of seedlings were used with 98 cell protray. From the test results, the success rate of 89.28 per cent, missing seedling of 3.57 per cent, damaged seedling of 4.08 per cent, seedling delivering failure of 3.06 per cent were recorded for tomato seedlings. Similarly, in chilli and brinjal the success rate of 95.40 and 91.83 per cent, the missing seedling of 2.04 and 2.55 per cent, damaged seedling of 1.53 and 3.06 per cent and seedling delivering failure of 1.02 and 2.55 per cent respectively were observed. Transplanting frequency of developed mechanism was 2520 seedlings h-1.   As a whole, this work was able to develop a working model of vegetable seedling transplanting mechanism, which can eject seven seedlings at a time from portray cell and transfer them into the slotted conveyor. 

Publisher

ANSF Publications

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3