Influence of elevated carbon dioxide concentrations on methane emission and its associated soil microflora in rice ecosystem

Author:

Rajkishore S. K.,Maheswari M.,Subramanian K. S.,Prabhu R.,Vanitha G.

Abstract

The dynamics of methane emission and its associated soil microflora in rice ecosystem as a response to elevated CO2 concentrations were studied in open top chamber (OTC) conditions. The treatments consisted of three levels of CO2 (396, 550 and 750 µmol mol-1) and three levels of nitrogen (0, 150 and 200 kg ha-1) and replicated five times in a completely randomized design. The data showed that elevated [CO2] significantly (P ? 0.01) increased the DOC throughout the cropping period with the values ranging from 533 to 722 mg L-1 and 368 to 501 mg L-1 in C750 and Camb, respectively. Methane emission rates were monitored regularly during the experiment period and it was revealed that elevated [CO2] had increased the methane emissions regardless of stages of crop growth.  It was observed that methane emissions were significantly higher under [CO2] of 750 µmol mol-1 by 33 to 54 per cent over the ambient [CO2] of 396 µmol mol-1. Consistent with the observed increases in methane flux, the enumeration of methanogens showed a significant (P ? 0.01) increase under elevated [CO2] with the population ranging from 5.7 to 20.1 x 104 CFU g-1 of dry soil and 5.1 to 16.9 x 104 CFU g-1 of dry soil under C750 and Camb concentrations, respectively. Interestingly, even though higher methanotrophs population was recorded under elevated [CO2], it could not circumvent the methane emission. Overall, the results of OTC studies suggest that methane mitigation strategies need to be explored for the future high CO2 environments. 

Publisher

ANSF Publications

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3