Effect of composition and depth of filter-bed on the efficiency of Sand-intermittent-filter treating the Industrial wastewater at Haridwar, India

Author:

Bhutiani Rakesh,Faheem Ahamad ,Ruhela Mukesh

Abstract

Sand Intermittent Filtration (SIF) is an established technology of wastewater treatment and in recent years it gains renewed interest due to its simplicity and less energy requirement. The aim of the present study was to evaluate the modified filter-bed Reactor using Sand-intermittent-filtration (SIF) for the removal of physicochemical parameters viz dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total hardness (TH), calcium hardness (CaH), chloride (Cl), turbidity, total solids (TS), total dissolved solids (TDS), and total suspended solids (TSS) of the Industrial wastewater of State Industrial Development Corporation of Uttarakhand Limited (SIDCUL) at Haridwar. The experiments were performed with the composition of the filter-bed having sand and gravel in the ratio of 1:1 (Reactor I); 1:2 (Reactor II) and 2:1 (Reactor III) at the room temperature 300C. Each Reactor was categorized into A, B and C type based on depth of filter-bed (A=10 cm, B=15 cm, C=30 cm). The maximum removal of TS (52.21%), TDS (50.66%), TSS (57.20%), turbidity (67.36%), chloride (28.81%), BOD (39.18%), COD (38.66%), TH (53.40%), and CaH (62.57%) was observed in Reactor II C (soil and gravel- 2:1 and 30 cm depth of bed) using 0.49 mm effective size and 0.49 uniformity coefficient (UC) of the sand. A mixture of sand and gravel in the Reactor II with a ratio of 2:1 yielded better efficiency in comparison to the Reactor I and Reactor III. Thus, SIF technology could be environment-friendly and economically cost-effective for removing various physicochemical parameters from Industrial wastewater.

Publisher

ANSF Publications

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3