Atomically precise binding conformations of adenine and its variants on gold using single molecule conductance signatures

Author:

Pan Xiaoyun1,Qian Cheng2ORCID,Chow Amber3,Wang Lu2ORCID,Kamenetska Maria134ORCID

Affiliation:

1. Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, USA

2. Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, USA

3. Department of Physics, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, USA

4. Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, USA

Abstract

We demonstrate single molecule conductance as a sensitive and atomically precise probe of binding configurations of adenine and its biologically relevant variants on gold. By combining experimental measurements and density functional theory (DFT) calculations of single molecule–metal junction structures in aqueous conditions, we determine for the first time that robust binding of adenine occurs in neutral or basic pH when the molecule is deprotonated at the imidazole moiety. The molecule binds through the donation of the electron lone pairs from the imidazole nitrogen atoms, N7 and N9, to the gold electrodes. In addition, the pyrimidine ring nitrogen, N3, can bind concurrently and strengthen the overall metal–molecule interaction. The amine does not participate in binding to gold in contrast to most other amine-terminated molecular wires due to the planar geometry of the nucleobase. DFT calculations reveal the importance of interface charge transfer in stabilizing the experimentally observed binding configurations. We demonstrate that biologically relevant variants of adenine, 6-methyladenine and 2′-deoxyadenosine, have distinct conductance signatures. These results lay the foundation for biosensing on gold using single molecule conductance readout.

Funder

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3