Precise spectral directional infrared emissivity of a Cantor high-entropy alloy

Author:

Gabirondo-López Jon1ORCID,López-Ferreño Iñaki2ORCID,Straumal Boris3ORCID,Gornakova Alena3ORCID,Korneva Anna4,Kogtenkova Olga3,Echániz Telmo5ORCID,Lopez Gabriel A.1

Affiliation:

1. Physics Department, University of the Basque Country (UPV/EHU) 1 , Leioa, Spain

2. Applied Mathematics, University of the Basque Country (UPV/EHU) 2 , Vitoria-Gasteiz, Spain

3. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences 3 , Ac. Osipyan str. 2, 142432 Chernogolovka, Russia

4. Institute of Metallurgy and Materials Science, Polish Academy of Sciences 4 , Reymonta St. 25, 30-059 Cracow, Poland

5. Applied Mathematics, University of the Basque Country (UPV/EHU) 5 , Bilbao, Spain

Abstract

The multicomponent equiatomic CrMnFeCoNi alloy was proposed by B. Cantor almost 20 years ago and was the first in the family of the so-called multiprincipal or high-entropy alloys (HEAs). Various mechanical properties of the Cantor alloy and its derivatives, such as corrosion behavior, oxidation resistance, irradiation response, diffusion bonding, and weldability, have been studied these past years. Unfortunately, data on their thermo-physical properties are scarce and the information about infrared emissivity is completely absent. Having reliable infrared emissivity data at working conditions is very important for non-contact temperature measurements and for modeling heat transfer by radiation during manufacturing. In this work, a Cantor alloy, as a typical example of HEAs, was manufactured with levitation melting in vacuum. The alloy contains mainly one phase with face-centered cubic lattice and small amount of oxide precipitates. The angle-dependent spectral directional emissivity was measured between 200 and 700 °C. Reproducible data were obtained upon several thermal cycles. The total directional emissivity is almost constant from 10° to 50°, and it increases up until it reaches a maximum around 70°. Integrating these data, total hemispherical emissivity was determined, and it was observed that this property remains almost constant at 0.28 in a wide temperature range, showing a minor increase with increasing temperature. Spectral directional emissivity measurements allow detecting incipient oxidation processes. These data show the necessity of measuring emissivity at working temperatures to achieve a precise quantification of radiative heat transfer.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3