Revealing quasi-excitations in the low-density homogeneous electron gas with model exchange–correlation kernels

Author:

Kaplan Aaron D.1ORCID,Ruzsinszky Adrienn2ORCID

Affiliation:

1. Materials Project, Lawrence Berkeley National Laboratory 1 , Berkeley, California 94720, USA

2. Department of Physics and Engineering Physics, Tulane University 2 , New Orleans, Louisiana 70118, USA

Abstract

Time-dependent density functional theory within the linear response regime provides a solid mathematical framework to capture excitations. The accuracy of the theory, however, largely depends on the approximations for the exchange–correlation (xc) kernels. Away from the long-wavelength (or q = 0 short wave-vector) and zero-frequency (ω = 0) limit, the correlation contribution to the kernel becomes more relevant and dominant over exchange. The dielectric function, in principle, can encompass xc effects relevant to describe low-density physics. Furthermore, besides collective plasmon excitations, the dielectric function can reveal collective electron–hole excitations, often dubbed “ghost excitons.” Besides collective excitons, the physics of the low-density regime is rich, as exemplified by a static charge-density wave that was recently found for rs > 69, and was shown to be associated with softening of the plasmon mode. These excitations are seen to be present in much higher density 2D homogeneous electron gases of rs ≳ 4. In this work, we perform a thorough analysis with xc model kernels for excitations of various nature. The uniform electron gas, as a useful model of real metallic systems, is used as a platform for our analysis. We highlight the relevance of exact constraints as we display and explain screening and excitations in the low-density region.

Funder

Basic Energy Sciences

Tulane University

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3