Physical discovery in representation learning via conditioning on prior knowledge

Author:

Liu Yongtao1ORCID,Huey Bryan D.2ORCID,Ziatdinov Maxim A.13,Kalinin Sergei V.4ORCID

Affiliation:

1. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 1 , Oak Ridge, Tennessee 37831, USA

2. Materials Science and Engineering, University of Connecticut 2 , Storrs, Connecticut 06269, USA

3. Computational Sciences and Engineering Division, Oak Ridge National Laboratory 3 , Oak Ridge, Tennessee 37831, USA

4. Materials Science and Engineering, The University of Tennessee 4 , Knoxville, Tennessee 37996, USA

Abstract

Recent advances in electron, scanning probe, optical, and chemical imaging and spectroscopy yield bespoke data sets containing the information of structure and functionality of complex systems. In many cases, the resulting data sets are underpinned by low-dimensional simple representations encoding the factors of variability within the data. The representation learning methods seek to discover these factors of variability, ideally further connecting them with relevant physical mechanisms. However, generally, the task of identifying the latent variables corresponding to actual physical mechanisms is extremely complex. Here, we present an empirical study of an approach based on conditioning the data on the known (continuous) physical parameters and systematically compare it with the previously introduced approach based on the invariant variational autoencoders. The conditional variational autoencoder (cVAE) approach does not rely on the existence of the invariant transforms and hence allows for much greater flexibility and applicability. Interestingly, cVAE allows for limited extrapolation outside of the original domain of the conditional variable. However, this extrapolation is limited compared to the cases when true physical mechanisms are known, and the physical factor of variability can be disentangled in full. We further show that introducing the known conditioning results in the simplification of the latent distribution if the conditioning vector is correlated with the factor of variability in the data, thus allowing us to separate relevant physical factors. We initially demonstrate this approach using 1D and 2D examples on a synthetic data set and then extend it to the analysis of experimental data on ferroelectric domain dynamics visualized via piezoresponse force microscopy.

Funder

Basic Energy Sciences

Publisher

AIP Publishing

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3