Scanning tunneling microscopy under chemical reaction at solid–liquid and solid–gas interfaces

Author:

Kim Yongman1ORCID,Kim Young Jae1ORCID,Park Jeong Young1ORCID

Affiliation:

1. Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea

Abstract

The task of bridging the pressure gap between ideal ultrahigh vacuum conditions and more realistic reaction conditions involving gas and liquid phases is crucial in surface and interfacial chemistry. Scanning tunneling microscopy (STM) has played a key role in addressing this challenge by enabling atomic-scale probing of the interface. STM enabled us to study surface structure, electronic structure, atomic manipulation, dynamics of molecules and atoms, and chemical properties of the surface at the atomic scale. Over the past four decades, the field of STM has undergone explosive growth. This review article focuses on recent advances in operando STM, specifically in the study of solid–liquid and solid–gas interfaces. It highlights the latest works in ambient-pressure STM, which has enabled the observation of atomic features under various gas and reaction conditions. This information sheds light on the surface mobility of adsorbates and atomic structures of reaction intermediates. The review also addresses research on electrochemical STM, which investigates the evolution of surface morphology under electrochemical processes and provides insights into atomic-scale reaction mechanisms. Finally, the article outlines future challenges and perspectives for operando STM techniques.

Funder

National Research Foundation in Korea

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3