Machine-learned acceleration for molecular dynamics in CASTEP

Author:

Stenczel Tamás K.1ORCID,El-Machachi Zakariya2ORCID,Liepuoniute Guoda1ORCID,Morrow Joe D.2ORCID,Bartók Albert P.34,Probert Matt I. J.5ORCID,Csányi Gábor1ORCID,Deringer Volker L.2ORCID

Affiliation:

1. Engineering Laboratory, University of Cambridge 1 , Cambridge CB2 1PZ, United Kingdom

2. Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford 2 , Oxford OX1 3QR, United Kingdom

3. Department of Physics, University of Warwick 3 , Coventry CV4 7AL, United Kingdom

4. Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick 4 , Coventry CV4 7AL, United Kingdom

5. School of Physics, Engineering and Technology, University of York 5 , York YO10 5DD, United Kingdom

Abstract

Machine learning (ML) methods are of rapidly growing interest for materials modeling, and yet, the use of ML interatomic potentials for new systems is often more demanding than that of established density-functional theory (DFT) packages. Here, we describe computational methodology to combine the CASTEP first-principles simulation software with the on-the-fly fitting and evaluation of ML interatomic potential models. Our approach is based on regular checking against DFT reference data, which provides a direct measure of the accuracy of the evolving ML model. We discuss the general framework and the specific solutions implemented, and we present an example application to high-temperature molecular-dynamics simulations of carbon nanostructures. The code is freely available for academic research.

Funder

Horizon 2020 Framework Program

Engineering and Physical Sciences Research Council

European Commission

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3