Equilibrium molecular dynamics evaluation of the solid–liquid friction coefficient: Role of timescales

Author:

Oga Haruki1ORCID,Omori Takeshi2ORCID,Joly Laurent3ORCID,Yamaguchi Yasutaka14ORCID

Affiliation:

1. Department of Mechanical Engineering, Osaka University 1 , 2-1 Yamadaoka, Suita 565-0871, Japan

2. Department of Mechanical Engineering, Osaka Metropolitan University 2 , 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

3. Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière 3 , F-69622 Villeurbanne, France

4. Water Frontier Research Center (WaTUS), Research Institute for Science and Technology, Tokyo University of Science 4 , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

Solid–liquid friction plays a key role in nanofluidic systems. Following the pioneering work of Bocquet and Barrat, who proposed to extract the friction coefficient (FC) from the plateau of the Green–Kubo (GK) integral of the solid–liquid shear force autocorrelation, the so-called plateau problem has been identified when applying the method to finite-sized molecular dynamics simulations, e.g., with a liquid confined between parallel solid walls. A variety of approaches have been developed to overcome this problem. Here, we propose another method that is easy to implement, makes no assumptions about the time dependence of the friction kernel, does not require the hydrodynamic system width as an input, and is applicable to a wide range of interfaces. In this method, the FC is evaluated by fitting the GK integral for the timescale range where it slowly decays with time. The fitting function was derived based on an analytical solution of the hydrodynamics equations [Oga et al., Phys. Rev. Res. 3, L032019 (2021)], assuming that the timescales related to the friction kernel and the bulk viscous dissipation can be separated. By comparing the results with those of other GK-based methods and non-equilibrium molecular dynamics, we show that the FC is extracted with excellent accuracy by the present method, even in wettability regimes where other GK-based methods suffer from the plateau problem. Finally, the method is also applicable to grooved solid walls, where the GK integral displays complex behavior at short times.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3