Affiliation:
1. School of Biomedical Engineering, Indian Institute of Technology (BHU) 1 , Varanasi 221005, India
2. CSIR-National Physical Laboratory 2 , New Delhi 110012, India
Abstract
Surface electromyography (sEMG) is considered an established means for controlling prosthetic devices. sEMG suffers from serious issues such as electrical noise, motion artifact, complex acquisition circuitry, and high measuring costs because of which other techniques have gained attention. This work presents a new optoelectronic muscle (OM) sensor setup as an alternative to the EMG sensor for precise measurement of muscle activity. The sensor integrates a near-infrared light-emitting diode and phototransistor pair along with the suitable driver circuitry. The sensor measures skin surface displacement (that occurs during muscle contraction) by detecting backscattered infrared light from skeletal muscle tissue. With an appropriate signal processing scheme, the sensor was able to produce a 0–5 V output proportional to the muscular contraction. The developed sensor depicted decent static and dynamic features. In detecting muscle contractions from the forearm muscles of subjects, the sensor showed good similarity with the EMG sensor. In addition, the sensor displayed higher signal-to-noise ratio values and better signal stability than the EMG sensor. Furthermore, the OM sensor setup was utilized to control the rotation of the servomotor using an appropriate control scheme. Hence, the developed sensing system can measure muscle contraction information for controlling assistive devices.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献