Exploring pressure, temperature, and flow patterns in ciliated microfluidic systems

Author:

Riaz Arshad1ORCID,Mehmood Kinza2ORCID,Chamorro Leonardo P.3456ORCID

Affiliation:

1. Department of Mathematics, Division of Science and Technology, University of Education 1 , Lahore 54770, Pakistan

2. Mathematics, Division of Science and Technology, University of Education 2 , Lahore 54770, Pakistan

3. Mechanical Science and Engineering, University of Illinois 3 , Urbana, Illinois 61801, USA

4. Aerospace Engineering, University of Illinois 4 , Urbana, Illinois 61801, USA

5. Civil and Environmental Engineering, University of Illinois 5 , Urbana, Illinois 61801, USA

6. Geology, University of Illinois 6 , Urbana, Illinois 61801, USA

Abstract

The integration of cilia-induced flow, nanofluids, and the inclusion of cobalt ferrite particles holds significant promise in fluid dynamics, heat transfer, and nanotechnology, offering potential breakthroughs in various technological and material applications. We explore the behavior of cilia-induced flow in a nanofluid confined within an annular domain, employing the Williamson fluid model to characterize the behavior of cobalt ferrite (CoFe2O4) nanoparticles. Our analysis is based on a mathematical treatment rooted in fundamental mass, momentum, and energy conservation principles while considering physical constraints (low Reynolds number and long wavelength) and adopting a dimensionless approach. By applying regular perturbation techniques, we derive series solutions for velocity and temperature profiles, providing insight into the complex interplay among cilia-generated flow, nanofluid properties, and the influence of Cobalt ferrite nanoparticles within the annular configuration. In particular, we uncovered clear correlations among cilia length, amplitude ratio, flow rate, and the Prandtl number with temperature distribution. Also, we observed substantial reductions in temperature trends under Weissenberg numbers and particle volume fractions.

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3