Phase change-related thermal property characterization and enhancement in carbon-based organic phase change composites

Author:

Li Mingxin1ORCID,Wang Xuanjie1ORCID,Shen Junhua2ORCID,Zhao Dong1ORCID,Lian Jie12ORCID

Affiliation:

1. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute 1 , 110, 8th Street, Troy, New York 12180, USA

2. Department of Materials Science and Engineering, Rensselaer Polytechnic Institute 2 , 110, 8th Street, Troy, New York 12180, USA

Abstract

By utilizing the significant amount of energy absorbed and released during their phase transitions, phase change materials (PCMs) can capture and store thermal energy to fill gaps between supply and demand. Due to their many favorable properties, organic PCMs have gained attention in a wide range of applications. Nevertheless, their inherent low thermal conductivity has limited the direct use of organic PCMs in thermal energy storage (TES). Extensive research has been conducted on enhancing organic PCM thermal conductivity by incorporating high thermal conductivity materials. Owing to their high thermal conductivity and low density, carbon-based materials have been extensively used for thermal conductivity enhancement in phase change composites (PCCs). Carbon-based organic PCCs, which incorporate highly thermally conductive carbon allotropes and their direct chemical derivatives with organic PCMs, are a group of diverse PCCs with highly promising potential for TES applications. Adequate latent heat and shape stability performances are crucial to the success of the applicational performances of these PCCs. Much empirical research has pushed efforts to enhance these phase change properties, yet a logical understanding of these enhancement efforts based on the thermodynamics and intermolecular interactions of carbon-based organic PCCs has been elusive. In particular, the effect of characterization methods on the evaluation of phase change properties has been largely understudied. This review strives to provide novel physical and chemical insights into latent heat and shape stabilization evaluation processes and enhancement efforts in carbon-based organic PCCs through a detailed review and analysis of recent literature. The review provides an unprecedented comprehension of newly developed PCCs that challenge the traditional understanding that the latent heat of PCCs cannot exceed that of its base PCM. Efforts on phase change property enhancement driven by these new insights have the potential for carbon-based organic PCCs to succeed in a variety of TES applications, including solar-thermal harvesting, thermal management of batteries and electronics, thermoregulating textiles, and infrared stealth and infrared responsive materials.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3