Optimization of molecular beam epitaxial film thickness uniformity using Monte Carlo simulations and an artificial neural network

Author:

Liang Kang123,Zhang Zhao1,Wu Gai1ORCID,Gan Zhiyin4,Liu Sheng124ORCID

Affiliation:

1. The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China

2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

3. Wuhan University Shenzhen Research Institute, Shenzhen 518057, China

4. School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The thickness uniformity of the molecular beam epitaxial film is one of the most important factors affecting the quality of the film, and it is mainly influenced by the angular distribution of the molecular source, which is mainly determined by the inner wall shape of the crucible. In this paper, an optimization method based on particle swarm optimization, Monte Carlo simulations, and an artificial neural network is proposed, aiming at optimizing the epitaxial film uniformity in the molecular beam epitaxy process. The optimum angular distribution of an effusion source is obtained by using the method of particle swarm optimization for a given geometric configuration. The Monte Carlo method is used to simulate the particle evaporation process to obtain the relationship between the shape parameters of the crucible inner wall and the particle angular distribution. The optimum crucible shape parameters are subsequently obtained under a particular apparatus geometric configuration by using the artificial neural network according to the above relationship and the desired optimum angular distribution. Finally, the optimized results are compared by experiments.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3