High-performance photodetector arrays for near-infrared spectral sensing

Author:

van Klinken Anne1ORCID,van Elst Don M. J.1ORCID,Li Chenhui1ORCID,Petruzzella Maurangelo1ORCID,Hakkel Kaylee D.1ORCID,Ou Fang1ORCID,Pagliano Francesco1ORCID,van Veldhoven René1ORCID,Fiore Andrea1ORCID

Affiliation:

1. Eindhoven University of Technology, Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute , P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Spectral sensing is an emerging field driven by the need for fast and non-invasive methods for the chemical analysis of materials in agri-food, healthcare, and industrial applications. We demonstrate a near-infrared spectral sensor, based on a scalable fabrication process and combining high responsivity, narrow linewidth, and low noise. The sensor consists of 16 resonant-cavity-enhanced photodetectors, each showing a unique spectral response consisting of narrow peaks. The spectral sensor thereby covers the wavelength range between 890 and 1650 nm, where organic materials show relevant spectral features from first and second overtones. For the fabrication of the detector arrays, we propose a simple and scalable fabrication approach that yields largely improved device characteristics with respect to the grey-scale electron-beam lithography process reported earlier. Through a series of five optical lithography steps, tuning layers of silicon nitride are deposited stepwise to obtain 16 different thicknesses and reduced surface roughness. With this novel fabrication approach, the obtained photodetectors achieve an average peak linewidth of 55 nm, a maximum peak responsivity of 0.3 A/W, and high suppression of the non-resonant background. We also demonstrate the impact of these improvements on the sensing performance for two relevant problems through an experiment and a set of simulations. With lateral dimensions of ∼1.4 × 1.4 mm2, the proposed photodetector array can be the key to robust, portable, and low-cost sensing instrumentation for on-site material analysis in various application fields.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Penta Call 2 Project Environmental Sensors for AIR Quality

High Tech Systems and Materials

NWO Zwaartekracht Research Center for Integrated Nanophotonics

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3