Confined ionic liquids films under shear: The importance of the chemical nature of the solid surface

Author:

Bernardino Kalil1ORCID,Ribeiro Mauro C. C.2ORCID

Affiliation:

1. Laboratório de Química Teórica, Departamento de Química, Universidade Federal de São Carlos 1 , Rod. Washington Luiz S/n, 13565-905 São Carlos, Brazil

2. Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo 2 , Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil

Abstract

Ionic liquids have generated interest in applications as lubricants and as additives to conventional lubricants due to their unique physical properties. In these applications, the liquid thin film can be subjected simultaneously to extremely high shear and loads in addition to nanoconfinement effects. Here, we use molecular dynamics simulations with a coarse-grained model to study a nanometric film of an ionic liquid confined between two planar solid surfaces both at equilibrium and at several shear rates. The strength of the interaction between the solid surface and the ions was changed by simulating three different surfaces with enhanced interactions with different ions. The increase in the interaction with either the cation or the anion leads to the formation of a solid-like layer that moves alongside the substrates; however, this layer can exhibit different structures and stability. An increase in the interaction with the high symmetry anion produces a more regular structure that is more resistant to the effects of shear and viscous heating. Two definitions were proposed and used for the calculation of the viscosity: a local definition based on the microscopic characteristics of the liquid and an engineering definition based on the forces measured at the solid surfaces, with the former displaying a correlation with the layered structure induced by the surfaces. Because of the shear thinning behavior of the ionic liquids as well as the temperature rise brought on by viscous heating, both the engineering and the local viscosities decrease as the shear rate increases.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Cientêfico e Tecnológico

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3