Nonlinear oscillations, chaotic dynamics, and stability analysis of bilayer graphene-like structures

Author:

Acharjee Saumen1ORCID,Dutta Nimisha1ORCID,Devi Reeta1ORCID,Boruah Arindam1ORCID

Affiliation:

1. Department of Physics, Dibrugarh University , Dibrugarh 786 004, Assam, India

Abstract

In this work, we have investigated the nonlinear oscillations and chaotic dynamics of perturbed bilayer graphene-like structures. The potential energy surface (PES) of bilayer graphene-like geometries is obtained by considering interactions of a co-aligned and counter-aligned arrangement of atoms. We studied the dynamics using the Poincaré surface of section for co-aligned hydrofluorinated graphene (HFG) and counter-aligned hexagonal boron nitride (h-BN) and generalized it for other systems using various choices of interaction parameters. The nature of the oscillations is understood via power spectra and the Lyapunov exponents. We found that the PES is very sensitive to the perturbation for all bilayer graphene-like systems. It is seen that the bilayer HFG system displays chaotic oscillations for strong perturbation, while for the h-BN system, the signature of chaos is found for weak perturbation. We have also generalized the work for perturbed bilayer graphene-like geometries, considering different interlayer interactions and the strength of perturbation. We found a signature of transition from regular to quasiperiodic and finally chaotic oscillations tuned via the strength of the perturbation for these geometries. The nature of the equilibrium points for bilayer graphene-like systems is analyzed via Jacobian stability conditions. We found three stable nodes for co-aligned HFG and counter-aligned h-BN systems for all interaction strengths. Though all other nodes are unstable saddle nodes, the signature of a local bifurcation is also found for weak perturbation.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3