In situ TEM heating experiments on thin epitaxial GeSn layers: Modes of phase separation

Author:

Martínez Karí1ORCID,Minenkov Alexey1ORCID,Aberl Johannes2ORCID,Buca Dan3ORCID,Brehm Moritz2ORCID,Groiss Heiko1ORCID

Affiliation:

1. Christian Doppler Laboratory for Nanoscale Phase Transformations, Center for Surface and Nanoanalytics, Johannes Kepler University Linz 1 , Altenberger Straße 69, 4040 Linz, Austria

2. Institute of Semiconductor and Solid-State Physics, Johannes Kepler University Linz 2 , Altenberger Straße 69, 4040 Linz, Austria

3. Peter Grünberg Institute (PGI-9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich 3 , 52428 Jülich, Germany

Abstract

The thermal stability of GeSn epitaxial thin films was investigated via in situ transmission electron microscopy (TEM). Samples were grown with a similar layer structure and 10 at.% Sn content by either molecular beam epitaxy or chemical vapor deposition. Despite the same layer thickness and concentration, the decomposition mode differs dramatically for each GeSn sample during annealing experiments. We observed that the sample with a Ge buffer on a Ge substrate is structurally stable up to 500 °C, while above this temperature, β-Sn precipitates appear, indicating a decomposition mechanism of solid-state precipitation. On the other hand, the second sample exhibited high susceptibility to Ga ion incorporation during the focused ion beam TEM specimen preparation, which is attributed to a high defect density owing to an atypically thin Ge buffer layer grown on a Si substrate. In this case, the efficient phase separation in the sample was facilitated by Ga contamination, promoting the appearance of a GaSn-based liquid phase at a temperature as low as 200 °C. The decomposition temperatures found and the occurrence of the two different decomposition modes are discussed in relation to the experimental methods used.

Funder

Christian Doppler Forschungsgesellschaft

Austrian Science Fund

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3