Migration and heat transfer modeling of a neutrally buoyant melting particle in Poiseuille flow

Author:

Kaviani Reza1ORCID,Naghashnejad Mohammad1ORCID,Shabgard Hamidreza1ORCID

Affiliation:

1. School of Aerospace and Mechanical Engineering, University of Oklahoma , Norman, Oklahoma 73019, USA

Abstract

A computational model is developed to simulate the hydrodynamic and heat transfer behavior of a melting cylindrical solid particle in plane Poiseuille flow between horizontal parallel plates. The two-dimensional transient conservation equations for mass, momentum, and energy are solved using a finite-volume scheme implemented on a deforming mesh, accounting for the rotation and non-uniform melting of the particle. An arbitrary Lagrangian–Eulerian (ALE) method is employed to directly track the moving and deforming solid–liquid interface during the particle migration and phase change. The developed model was validated by comparison with the previously reported numerical results for migration of a non-melting neutrally buoyant cylindrical particle in plane Poiseuille flow with heat transfer. The effects of flow Reynolds (Re), Grashof (Gr), and Stefan (Ste) numbers, as well as the initial position of the melting particle across the channel on the particle trajectory, melting rate, and average Nusselt (Nu) number were investigated. It was found that the melting rate increased by increasing Gr and Ste and decreased by increasing Re. The Nu did not change more than 20% with increasing Re number from 100 to 1000, but increased significantly by increasing Gr. It was also observed that by increasing Re, the particle migrates toward the channel center because of the stronger Magnus effect. Increasing Gr, on the other hand, pushes the particle to the bottom wall due to the stronger downward flow adjacent to the particle induced by buoyancy-driven convection (natural convection).

Funder

Advanced Research Projects Agency - Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3