Recurrent neural network wind power prediction based on variational modal decomposition improvement

Author:

Shi Chongqing1ORCID,Zhang Xiaoli2

Affiliation:

1. SDIC Guangxi New Energy Development Co., Ltd. 1 , Nanning, Guangxi, 530000, China

2. SDIC Gansu New Energy Co., Ltd. 2 , Lanzhou, Gansu, 730070, China

Abstract

In order to avoid the problem that the traditional recurrent neural network (RNN) wind power prediction model cannot take into account both the law of wind power variation and the impact of sudden change factors, this paper proposes an improved cyclic neural network wind power prediction model based on variational modal decomposition (VMD). The VMD algorithm is used to decompose the output power of wind power into different frequency components and analyze the impact of different frequency components on the prediction model. Combined with the feature extraction ability of the neural network, it can reduce the impact of abrupt abnormal data on the prediction results and improve the real-time prediction accuracy of wind power. According to the historical data of an actual wind farm, the results show that the accuracy of the wind power prediction model based on VMD and the recurrent neural network is more than 85%, which is superior to the traditional RNN and the standard long short term memory wind power prediction model.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3