Affiliation:
1. State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University 1 , Guangzhou 510275, China
2. 2012 Labs, Huawei Technologies Co., Ltd. 2 , Shenzhen 518129, China
3. Hefei National Laboratory 3 , Hefei 230088, China
Abstract
Coherent technology has been employed in long-haul transmission systems in the past decade, with growing demand for capacity at ever-lower costs per bit. High-performance coherent modulators with high data rates, wide bandwidth, small footprint, and low power operation are highly desired. Toward this end, we propose a folded thin-film lithium niobate (TFLN) dual-polarization in-phase quadrature modulator featuring a low half-wave voltage of 1 V and a compact footprint of 4 × 8 mm2. To suppress RF wavefront distortion and optimize high-frequency electro-optic performance, we utilize air-bridge structures in the U-turns of the traveling-wave electrodes. As a demonstration of the long-haul transmission capacities with our device, we present driverless 703 Gb/s/λ line-rate transmissions, with a subcarrier modulation scheme, over a 1120 km single-mode fiber link. Here, for the first time, to our knowledge, our device allows for attojoule-per-bit level electrical energy consumption over transmission distances above 1000 km. The device opens opportunities for much lower-cost and capacity-intensive coherent systems that consume ultra-low power, support high data rate, and work in small spaces.
Funder
National Key Research and Development Program of China
Innovation Program for Quantum Science and Technology
National Science Foundation of China
Subject
Computer Networks and Communications,Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献