The evolution of fast turbulent deflagrations to detonations

Author:

Hytovick Rachel1ORCID,Chambers Jessica1,Chin Hardeo1ORCID,Gamezo Vadim N.2,Poludnenko Alexei3ORCID,Ahmed Kareem1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida 1 , Orlando, Florida 32828, USA

2. Laboratories for Computational Physics and Fluid Dynamics, Naval Research Laboratory 2 , Washington, DC 20375, USA

3. Department of Mechanical Engineering, University of Connecticut 3 , Storrs, Connecticut 06269, USA

Abstract

We use advanced experimental techniques to explore turbulence-induced deflagration-to-detonation transition (tDDT) in hydrogen–air mixtures. We analyze the full sequence of turbulent flame evolution from fast deflagration-to-detonation using simultaneous direct measurements of pressure, turbulence, and flame, shock, and flow velocities. We show that fast turbulent flames that accelerate and develop shocks are characterized by turbulent flame speeds that exceed the Chapman–Jouguet deflagration speed in agreement with the tDDT theory and direct numerical simulation (DNS) results. Velocity and pressure evolutions are provided to detail the governing mechanisms that drive turbulent flame acceleration. Turbulent flame speeds and fluctuations are examined to reveal flow field characteristics of the tDDT process. This work contributes to the understanding of fundamental mechanisms responsible for spontaneous initiation of detonations by fast turbulent flames.

Funder

Air Force Office of Scientific Research

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference38 articles.

1. Determining the pressure gain of pressure gain combustion,2018

2. Gaseous detonations-a selective review;Prog. Energy Combust. Sci.,1991

3. Supersonic driven detonation dynamics for rotating detonation engines;Int. J. Hydrogen Energy,2019

4. Stabilized detonation for hypersonic propulsion;Proc. Natl. Acad. Sci. U. S. A.,2021

5. Mechanisms and occurrence of detonations in vapor cloud explosions;Prog. Energy Combust. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3