Effects of intramolecular chain conformation on the hydration and miscibility of polyethylene glycol in water studied by means of polymer reference interaction site model theory

Author:

Yamaguchi Tsuyoshi1ORCID,Chong Song-Ho2ORCID,Yoshida Norio3ORCID

Affiliation:

1. Graduate School of Engineering, Nagoya University 1 , Chikusa, Nagoya 464-8603, Japan

2. Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University 2 , Oe-honmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan

3. Graduate School of Informatics, Nagoya University 3 , Chikusa, Nagoya 464-8601, Japan

Abstract

To examine the conventional idea that the gauche conformation of the OCCO dihedral angle promotes the dissolution of polyethylene glycol (PEG) in water through strong hydration, the thermodynamic properties of liquid mixtures of PEG and water were studied by means of polymer reference interaction site model (PRISM) theory. The intramolecular correlation functions required as input for PRISM theory were calculated by the generator matrix method, accompanied by changes in the distribution of dihedral angles. In the infinite dilution limit, the increased probability of gauche conformation of the OCCO dihedral angles stabilizes the hydration of PEG through enhanced hydrogen bonding between the ether oxygen of PEG and water. The mixing Gibbs energies of the liquid mixtures were also calculated in the whole concentration range based on the Gibbs–Duhem equation, as per our recent proposal. A liquid–liquid phase separation was observed when all the dihedral angles of PEG were in the trans conformation; for the liquid mixture to be miscible in the whole concentration range, the introduction of the OCCO gauche conformation was found to be indispensable. The above theoretical results support the conventional idea that the OCCO gauche conformation is important for the high miscibility of PEG and water.

Funder

Japan Society for the Promotion of Science

MEXT

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3