Using electron energy-loss spectroscopy to measure nanoscale electronic and vibrational dynamics in a TEM

Author:

Kim Ye-Jin1ORCID,Palmer Levi D.1ORCID,Lee Wonseok1ORCID,Heller Nicholas J.1ORCID,Cushing Scott K.1ORCID

Affiliation:

1. Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, USA

Abstract

Electron energy-loss spectroscopy (EELS) can measure similar information to x-ray, UV–Vis, and IR spectroscopies but with atomic resolution and increased scattering cross-sections. Recent advances in electron monochromators have expanded EELS capabilities from chemical identification to the realms of synchrotron-level core-loss measurements and to low-loss, 10–100 meV excitations, such as phonons, excitons, and valence structures. EELS measurements are easily correlated with electron diffraction and atomic-scale real-space imaging in a transmission electron microscope (TEM) to provide detailed local pictures of quasiparticle and bonding states. This perspective provides an overview of existing high-resolution EELS (HR-EELS) capabilities while also motivating the powerful next step in the field—ultrafast EELS in a TEM. Ultrafast EELS aims to combine atomic-level, element-specific, and correlated temporal measurements to better understand spatially specific excited-state phenomena. Ultrafast EELS measurements also add to the abilities of steady-state HR-EELS by being able to image the electromagnetic field and use electrons to excite photon-forbidden and momentum-specific transitions. We discuss the technical challenges ultrafast HR-EELS currently faces, as well as how integration with in situ and cryo measurements could expand the technique to new systems of interest, especially molecular and biological samples.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3