Stefan problem coupled with natural convection: An application to dissolution process

Author:

Nandi Subhankar1ORCID,Yedida Sanyasiraju VSS1ORCID

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Madras , Chennai 600036, India

Abstract

This paper investigates the process of dissolution of a solute in a solvent placed in an horizontal concentric cylinder. The theoretical investigation solves a Stefan problem with phase transition due to natural convective flow. To realize the objective, the governing equation for the concentration distribution, stream function–vorticity form of the Navier–Stokes equation for the flow field, and a Stefan condition for calculating the timescale evolution of the front are coupled together with different parameters. These non-linear equations are solved using a stable and second-order accurate boundary-fitted alternating direction implicit scheme with first-order upwind difference approximation for convective terms. The numerical scheme is validated initially by applying it to solve a natural convection problem with no phase transition, for which benchmark solutions are available. The validated scheme is then applied to the chosen problem followed by a refinement study to obtain a reliable solution. The obtained results are used to analyze the effect of physical parameters such as the Stefan number (Ste), geometric aspect ratio of solute to fluid, the Rayleigh number (Ra) and the Schmidt (Sc) number on dissolution rates as well as the flow patterns. It is observed that the solute dissolution, without the temperature influence, mainly depends on the annulus gap width (L) and the convection rate. Additionally, it is also observed that, for the Rayleigh numbers greater than 105, the unit circular-shaped solute initially dissolves uniformly from the outer surface, but as the time progresses, due to the influence of laminar boundary layer flow around the solute, it changes into an egg-shape.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3