Bulk viscosity of hard sphere fluids by equilibrium and nonequilibrium molecular dynamics simulations

Author:

Heyes D. M.1ORCID,Pieprzyk S.2ORCID,Brańka A. C.2ORCID

Affiliation:

1. Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

2. Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland

Abstract

The bulk viscosity, η b, of the hard sphere (HS) fluid is computed by equilibrium and nonequilibrium molecular dynamics (NEMD) simulations, the latter using an adaptation of the time-stepping method for continuous potential systems invented by Hoover et al. [Phys. Rev. A 21, 1756 (1980)], which employs an imposed cyclic density variation on the system by affine scaling of the particle coordinates. The time-stepping method employed for HS is validated against exact event-driven hard sphere methodology for a series of equilibrium quantities over a wide density range, including the pressure, singular parts of the hard sphere viscosities, and the nonsingular parts of the shear viscosity time correlation functions. The time steps used are typically only a little smaller than those employed in continuous potential simulations. Exact pressure tensor fluctuation expressions are derived for the singular (or infinite limiting frequency) equilibrium parts of the viscosities, which were employed in the simulations. The values obtained agree well with the predictions of the Enskog theory for all densities considered. The bulk viscosity obtained by NEMD is shown to be noticeably frequency dependent for densities in excess of ∼0.8, decaying approximately exponentially to the Enskog and equilibrium simulation values at all densities considered for frequencies in excess of ∼5 in hard sphere units. Temperature profiles during the cycle and the effects of strain amplitude on the computed frequency dependent bulk viscosity are presented. The bulk viscosity increases with the maximum density amplitude.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3