Perspectives on phononic waveguides for on-chip classical and quantum transduction

Author:

Wang Yanan1ORCID,Lee Jaesung2ORCID,Feng Philip X.-L.3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, College of Engineering, University of Nebraska 1 , Lincoln, Nebraska 68588, USA

2. Department of Electrical and Computer Engineering, College of Engineering, University of Central Florida 2 , Orlando, Florida 32816, USA

3. Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida 3 , Gainesville, Florida 32611, USA

Abstract

Phononic waveguides (PnWGs) are devices with rationally designed periodic structures to manipulate mechanical oscillations and to engineer and control the propagation of acoustic waves, thus allowing for frequency and band selection of wave transmission and routing, promising for both classical and quantum transduction on chip-scale platforms with various constituent materials of interest. They can be incorporated into both electromechanical and optomechanical signal transduction schemes. Here, we present an overview of emerging micro/nanoscale PnWGs and offer perspectives for future. We evaluate the typical structural designs, frequency scaling, and phononic band structures of the PnWGs. Material choices, fabrication techniques, and characterization schemes are discussed based on different PnWG designs. For classical transduction schemes, an all-phononic integrated circuit perspective is proposed. Toward emerging quantum applications, the potential of utilizing PnWGs as universal interfaces and transduction channels has been examined. We envision PnWGs with extraordinary propagation properties, such as nonreciprocity and active tunability, can be realized with unconventional design strategies (e.g., inverse design) and advanced materials (e.g., van der Waals layered crystals), opening opportunities in both classical and quantum signal transduction schemes.

Funder

National Science Foundation

Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln

Publisher

AIP Publishing

Reference122 articles.

1. Sound and heat revolutions in phononics;Nature,2013

2. Infrasound from earthquakes;J. Geophys. Res.,2005

3. Sonar-based real-world mapping and navigation;IEEE J. Rob. Autom.,1987

4. A review on latest acoustic noise mitigation materials;Mater. Today: Proc.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3