Defects in poly(vinylidene fluoride)-based ferroelectric polymers from a molecular perspective

Author:

Liu Yang1ORCID,Chen Xin2ORCID,Han Zhubing2ORCID,Zhou Huamin1ORCID,Wang Qing2ORCID

Affiliation:

1. School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Abstract

As the most intensively investigated ferroelectric polymers, poly(vinylidene fluoride) and its co-/ter-polymers enable major breakthroughs in a wide range of applications. Since defects play a vital role in tuning a spectrum of physical properties of poly(vinylidene fluoride)-based ferroelectric polymers, defect engineering has become an ingenious and robust strategy in the design of high-performance ferroelectric polymers. In this Review, we summarize the physical insights into the role of defects induced by various monomers at the molecular level on the physical properties and the structure–property relationship of defect-modified ferroelectric polymers. We focus on the fundamentals of the different structural defects on tailoring the dielectric, ferroelectric, electromechanical, and electrocaloric properties, along with the device performance enhancement in capacitors, actuators, and solid-state cooling. The influence of defects on the electric field dependence of the electrostriction and electrocaloric response is highlighted. The role of chiral defects in driving the emergent relaxor properties and morphotropic phase boundary behavior of ferroelectric polymers is discussed. Finally, we offer insightful perspectives on the challenges and opportunities in this rapidly evolving field. The underlying mechanisms revealed in the article are anticipated to guide future fundamental and applied studies of ferroelectric polymers that capitalize on defect engineering for electronic and energy applications.

Funder

Huazhong University of Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3