Seebeck-mediated ionic transport in 1T molybdenum disulfide thin films

Author:

Marcus Gabriel1ORCID,Swathi Kadaba1ORCID,Carroll David1ORCID

Affiliation:

1. Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27105, USA

Abstract

Molybdenum sulfide (MoS2) is a transition metal dichalcogenide that can achieve ion transport, thanks to its interlayer spacing, 1T/2H surface properties, and inherent thermoelectric properties. In this study, nanosheets of 1T MoS2 were synthesized, deposited as thin film stacks, and utilized as a self-powered nano-channel membrane for the intercalation of sodium chloride ions. Controlled deposition of a NaCl solution droplet onto a thermally activated 1T MoS2 film caused a characteristic voltage spike and decay. These phenomena result from ion–surface interactions followed by Soret- and thermoelectric-induced transport and eventual intercalation within the film layers. Voltage decay curves were recorded for various NaCl droplet concentrations deposited onto MoS2 films subject to a range of temperature gradients (ΔT). Areas under the final decay curves were integrated; both higher salt concentration and greater ΔT were associated with larger integrated areas. A direct relationship between droplet voltage response and concentration was found, potentially allowing for 1T MoS2 to function as a sensor of solution ion concentrations.

Funder

National Aeronautics and Space Administration

U.S. Air Force

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3