Effect of ambient environment and magnetic field on laser-induced cobalt plasma

Author:

Khan Muhammad Asad1ORCID,Bashir Shazia2ORCID,Chishti Naveed Ahmed1ORCID,Bonyah Ebenezer3ORCID,Dawood Asadullah4ORCID,Ahmad Zubair1ORCID

Affiliation:

1. Department of Mathematics and Physics, University of Campania “Luigi Vanvitelli,” 1 Caserta 81100, Italy

2. Centre for Advanced Studies in Physics (CASP), Government College University (GCU) Lahore 2 , Lahore, Pakistan

3. Information Department of Mathematics Education, Akenten Appiah Menka University of Skills Training and Entrepreneurship Development 3 , Kumasi, Ghana

4. Department of Physics, National Excellence Institute (University) 4 , Islamabad 04524, Pakistan

Abstract

Plasma parameters of magnetically confined Cobalt (Co) plasma have been evaluated by using laser-induced breakdown spectroscopy at various laser irradiances, under different ambient pressures of two environments such as Ar and Ne and at different time delays. The effect of laser irradiance on Co plasma is exposed in the presence and absence of a Transverse Magnetic field (TMF) while keeping environmental gas pressure constant, i.e., 10 Torr. For this purpose, Co pellets were exposed to Nd: YAG laser (1064 nm, 10 ns) at various laser irradiances ranging from 1 to 2.9 GW cm−2. To investigate the impact of background gas pressures, Co pellets were exposed to various pressure varying from 5 to 760 Torr of Ar and Ne. In the case of time delay variation, the Co plasma parameters Texc and ne decrease exponentially. A significantly pronounced effect of the presence of an external TMF of strength 0.9 T on time-integrated Co plasma parameters has been revealed. Plasma parameters Texc and ne are considerably increased in the presence of TMF in both ambient environments because of being constrained to a very small region due to which collisions will be enhanced. Implementation of the 0.9 T TMF on a laser-induced plasma of Co is responsible for the confinement of plasma. The surface morphology of laser-irradiated Co samples was also discussed to confirm the effect of TMF. Fine and uniform structures are observed in samples treated in the presence of TMF by using the SEM technique.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3